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Abstract

Human visual recognition is based largely on shape, yet
effectively using shapes in natural image retrieval is a chal-
lenging task. Most existing methods are based on the geo-
metric equations of curves computed from processing an
entire image. These processes are computationally inten-
sive, lack flexibility and do not take advantage or with min-
imum use of the Gestalt rules of human vision. By apply-
ing certain mechanisms based on the human visual percep-
tion process, our methods extract generic shape features
from real world images. We extract and group perceptu-
ally significant segments and use their properties to cre-
ate a Euclidean distance matrix for image retrieval. As
all the computing is based on simple calculation and one
pixel width edges instead of the whole image, this method
provides a novel and efficient image feature representation.
Testing on standard benchmark datasets and comparison
with other well-known methods show this shape analysis
method using only compact feature vectors performs well
and robustly for real world images.

1 Introduction

Content-based image retrieval (CBIR) is the task of au-
tomatically finding images relevant to a query image from
the Web or large image datasets using the inherent charac-
teristics of image itself. To successfully achieve this goal,
there are two main issues: how to find suitable features to
encode image content and how to quantify these features to
support efficient similarity measurements.

Finding effective image features is the first step in CBIR.
Most existing general-purpose CBIR systems use primitive
features, i.e. color, texture and shape.

Color information is relatively easy to extract and cal-
culate and, therefore, is popularly used in CBIR systems.
Color histogram and color moments are often used color
features. A color histogram represents the distribution of
colors in an image, derived by quantifying the pixels in
each given set of color ranges. Color histogram matching
techniques are discussed in [16]. In [14], a set of moments
are extracted based on the chromaticity diagram to repre-
sent the frequency and distribution of colors in the image.
Compared with the full chromaticity histogram methods,
this representation is compact and constant but has a high
computational cost.

Texture features provide more spatial or regional infor-
mation than color features. Tamura et al [17] proposed one
of most popular sets that contains six features selected by
psychological experiments: coarseness, contrast, direction-
ality, line-likeness, regularity and roughness. The disad-
vantages of texture-based methods are that they cannot be
applied to different classes of texture with reasonable suc-
cess and some methods involve high computation costs and
implementational complexity [1]. The local binary pattern
(LBP) [11, 12] is a texture analysis operator which is related
to many well-known texture analysis methods.

Some research results suggest that using both color fea-
tures and spatial relations is a better solution [15]. The SIM-
PLIcity [20] system classifies images into semantic cate-
gories, such as textured-nontextured and graph-photograph,
before the retrieval, extracts features according to the se-
mantic class and uses a region-matching scheme based on
K-means algorithm that integrates properties of all the re-
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gions in the images. The number of k is adaptively selected
by gradually increasing k until a stopping criteria is met.
However since the initial cluster assignment is random, dif-
ferent runs of the K-means clustering algorithm may not
give the same final clustering solution.

Human visual recognition is largely based on shape.
Shape is also important in image sets lacking large color
differences, such as medical images [10]. Most real world
objects have clear contours which are important clues for
recognition. Most shape-based image retrieval techniques
rely on Fourier descriptor and moment invariants unrelated
to human perception [15, 22].

Some shape-based methods attempt to apply the rules of
human perception observed by Gestalt psychologists. Iqbal
et al [9] applied perceptual grouping rules to retrieve large
manmade objects. Manmade objects generally have sharp
edges and straight boundaries which exhibit a large number
of significant edges, junctions, parallel lines and polygons.
In [2], a retrieval method based on local perceptual shape
descriptor and similarity indexing is proposed. Each shape
is partitioned into several tokens in correspondence to a set
of perceptually salient attributes and each token is repre-
sented by its orientation in 2D space. Perceptual shape fea-
tures have shown some potential with limited data and only
global properties [21] but no study using standard natural
image datasets and local features has been undertaken.

Shape-based systems usually focus on images with iso-
lated objects in uniform backgrounds. Effectively using
edges in natural image retrieval is especially difficult. Most
edge feature-based methods emphasize contour simplifi-
cation in removing noise and other irrelevant features for
shape matching [4]. This filtering often results in an inabil-
ity to utilize texture information and handle the retrieval of
real world images.

In this paper, our strategy is to use the Gestalt laws of
human vision to develop feature extraction and content rep-
resentation that can easily be used as the basic elements
for qualitative image analysis and image retrieval. We pro-
pose a perceptual shape-based image content representa-
tion for image retrieval. This method uses both global and
local shape features and incorporates textural information
from often ignored noise segments. We apply these percep-
tual features to image retrieval on standard natural image
datasets of and compare the results with several other com-
mon methods.

2 A Shape-based CBIR Model

In our previous research, a Perceptual Shape Language
(PSL) [23, 24] was established which provides tools used
to extract the features and forms that users and researchers
desire to support their different vision applications, such as
motion object tracking [8] and medical image registration

[18]. The features consist of lists of generic edge segments
and partitioning points. This paper applies these features to
represent images and support similarity measuring for re-
trieval purpose.

The query technique in this CBIR system is query by
example, i.e, the user specifies an example image and the
image database is searched and compared against this query
image. There are two options of providing example image.
It can be a normal image provided by the user, or the user
can draw a rough approximation using graphical painting
tools. The first option is chosen for this system.

Figure 1 shows the PSL solution for CBIR application
in this research. The rounded rectangles are the processes
and the rectangles show data. The user specifies a query
image to search for its best matchings in image dataset.
In the offline preprocessing, all the images in database are
represented by image feature vectors to be matched against
user’s query image. Retrieval becomes a matter of measur-
ing the similarity between the feature vectors of the query
image and images in the dataset. To represent an image by
a feature vector involves two processes. First, PSL func-
tions extract the perceptual edge tokens from the image.
This feature partitioning and extraction process is an edge-
based parsing. Second, these edge tokens are encoded into
a feature vector to describe the image. Image matching
compares the vector of the user’s query image with vectors
from the database images. Image matching includes two
processes: similarity computing and ranking. Similarity is
computed between the query image and each database im-
age by measuring the distance between their image feature
vectors. The distance functions are specified in the system.
Usually, the bigger the distance value is, the less similar the
two images are. Ranking arranges the database images ac-
cording to their similarities with the query image and the
most similar images are the retrieved image results.

In an information retrieval system, precision is the num-
ber of correct images divided by the number of retrieved
images and recall is the number of correct images divided
by the total number of possible correct images. Mean aver-
age precision (MAP) is the average of the precision at each
successful retrieval averaged over a query for each image
in the database. MAP is an effective measure of retrieval
success [19]. The formula of mean average precision is

MAP =
1
N

N∑

i=1

AvePi

where N is the number of images in the dataset and AvePi is
the average precision using the image i as the query image.
Average precision is the average of the precision after each
relevant image is retrieved, which is defined as

AveP =
∑M

r=1 (P (r)× rel(r))
# of relevant images
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Figure 1. The PSL solution for CBIR applica-
tion.

where r is the rank, M is the number retrieved, rel() is a
binary function on the relevance of a given rank and P ()
is the precision at a given cut-off rank. Mean average pre-
cision provides an index of retrieval performance over all
images and retrievals with higher value indicating better re-
trieval results.

3 Perceptual Shape Parsing and Grouping

Gao and Wong [7] presented a generic curve grouping
and partitioning model which allows machines to perform
curve segmentations following rules based on the observa-
tions of Gestalt psychologists. Generic segments (GSs) are
perceptual tokens perceived by humans as atomic features.
As shown in Figure 2, GS is a set of points satisfying certain
properties which are classified into eight categories accord-
ing to the tangent functions of GS y = f(x) and its inverse
function x = ϕ(y). The computative definitions for these
generic segments and the detailed description of this model
can be found in [23].

Figure 2. The eight categories of generic seg-
ments [7].

A curve partition point (CPP) is a perceptually signifi-

cant point at which a transition of monotonicity takes place
[24]. CPPs best divide edge traces into perceptually atomic
tokens, which are useful and meaningful for observation
and representation. All these generic perceptual tokens
are perceptually distinguishable and can be defined quali-
tatively. They can easily be used as the basic elements of
perceptual organization for qualitative image analysis and
image retrieval. For example, vertical lines and horizontal
lines commonly occur in the structures of manmade objects.
This important clue for the image retrieval is included into
the perceptual edge tokens. As shown in Figure 2, clusters
of LS3 and LS4 are the groups of vertical lines and hori-
zontal lines in an image and the segments in each cluster of
LS3 and LS4 are parallel to each other. Figure 3(a) shows
an example of parsing an image into perceptual edge tokens
and their clusters. This parsing process divided images into
perceptual edge tokens.

Due to the complexities of images, such as natural ob-
jects or scenes, contour-based methods often over-segment
these images. Regular shape contours are mixed with tex-
ture edge fragments and background noise. GSs with con-
tinuous gradient change are often the true boundaries of ob-
jects. Usually noise has rapid random changes of gradient
and direction along the edge and exhibits severe discontinu-
ity on the strength and smoothness of the edge. A classifica-
tion method to distinguish segments into noise and GSs are
proposed in [24]. In most cases, noise edges are unwanted
in contour-based object recognition methods, but groups of
noise edges may capture texture patterns in images which
would be useful features. Therefore, GSs and noise are used
to represent the image content.

Image feature vectors contain the values that encode the
image content. In this paper, the feature vectors are called
perceptual shape features which are built upon GSs and
noise edges provided by PSL functions.

4 Perceptual Shape Feature-based Image
Content Representation

Perceptual shape features are built in a generic way and
both the global properties and the local properties of the
features are used to represent an image. There are three
considerations when building the perceptual shape features:
the types of segments to consider, how to measure the sig-
nificance of each type of edges in the image and the spatial
groupings of the features.

We propose a short and a long feature vector to repre-
sent the images. The short vector includes the significance
measures of the segments but omits the spatial grouping for
the sake of conciseness. The long vector contains both the
significance information and the spatial distribution of the
segments.

For this study, we used all eight GSs and noise segments.
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(a) The graylevel original im-
age.

(b) The edge segments and
CPPs.

(c) GSs.

(d) Cluster of LS3 segments. (e) Cluster of LS4 segments.

Figure 3. Illustration of parsing an image into
perceptual edge tokens and clusters of seg-
ments.

Their significance was represented by the number of noise
segments, the total length of noise segments and the total
length of each GS type.

The length of a curve segment or noise is counted as the
number of the pixels on that segment. Since the images
are digitized as a mesh grid, the extracted straight lines are
zigzagged slightly. Therefore the length of a line segment is
calculated as the distance between its two end point pixels.
For an image, short vector SV can be expressed as:

SV = {#(NS), L(NS), L(LSi), L(CSi)|i = 1, ..., 4}

where #(NS) is the number of noise segments, L(NS)
is the total length of noise segments, L(LSi) is the total
length of straight line segments of category LSi, L(CSi)
is the total length of curve segments CSi and i denotes the
type of the generic segment. The resulting short vector has

(a) Graylevel original image. (b) Edges and CPPs.

(c) GS edge map. (d) 8× 8 GS regions.

(e) Texture map. (f) 4× 4 noise regions.

Figure 4. An example image and its percep-
tual shape representation illustration. In (d)
and (f), darker color indicate more signifi-
cance of segments in the region.

10 elements.
The long vector combines the global properties of the

short vector with local spatial properties of the edges. We
created a GS edge map, shown in Figure 4(c), by dividing
the image into 8 × 8 regions. The noise features were di-
vided into 4 × 4 regions to create a texture map, shown in
Figure 4(e). For an image, the long vector LV can be ex-
pressed as:

LV = {SV, Ri(GS), Rj(NS)|i = 1, ..., 64, j = 1, ..., 16}

where SV is the short vector of this image, i and j are the
indexes of the regions, Ri(GS) is the significance value of
the segments in region i in GS edge map, Rj(NS) is the
significance value of the noise in region j in texture map.
For this study, the significance value of the segments in a
region is the number of pixels of the segments falling in the
region. The spatial information is therefore encoded in 64
GS spatial bins, shown in Figure 4(d) and 16 texture spatial
bins, shown in Figure 4(f). The resulting long vector has 90
elements. These regions could be adjusted to best represent
the images in particular datasets.
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Images are compactly represented for retrieval purposes
using these perceptual feature vectors. To distinguish from
feature vectors of other methods, for the remainder of the
paper we refer to the short vector as Perceptual Shape Fea-
tures (10) and the long vector as Perceptual Shape Features
(90).

5 Experiments

To investigate the potential applications of perceptual
shape features, we conducted image retrieval experiments
on two datasets. For comparison, we also calculated Fourier
transform based features[3], LBP [11] and intensity his-
togram representing the basic features of shape-based meth-
ods, texture-based methods and color-based methods. In
all the experiments, the similarity of images was measured
by Euclidean distance. The Euclidean distance d between
two image feature vectors P = (p1, p2, ..., pn) and Q =
(q1, q2, ..., qn) is

d =

√√√√
n∑

i=1

(pi − qi)2

where n is the number of the elements in an image feature
vector, pi and qi are the elements in feature vectors.

5.1 Experimental Setup

The Wang dataset [20], available from http://wang.
ist.psu.edu/docs/related/, has 1000 images.
There are 10 categories: Africa people and village, Beach,
Buildings, Buses, Dinosaurs, Elephants, Flowers, Horses,
Mountains and glaciers, Food. Each category has 100 im-
ages. The image size is 256 × 384 pixels or 384 × 256
pixels.

The Oliva dataset [13], available from http://cvcl.
mit.edu/database.htm, has 2688 urban and natural
scene images. This includes 8 categories: Coast and beach,
Open country, Forest, Mountain, Highway, Street, City cen-
ter, Tall building. The image size is 256× 256.

Figure 5 and Figure 6 show a few example query results
from the two datasets. The query image and the correspond-
ing ten most relevant images are shown in each retrieval.
The average precision of the query image is also given.

5.2 Comparison Study

The Fourier feature is suggested as a low-level shape fea-
ture for content-based image retrieval in [3]. The Fourier
transform is performed on the 256 × 256 normalized im-
age. The Fourier spectrum is low pass filtered and then
decimated by factors of 16 or 32 resulting in 128 and 32
element feature vectors.

(a) Image query of 671.

(b) Image query of 13.

Figure 5. Two sample queries and the cor-
responding top ten retrieved images in the
1000 image Wang dataset. Top image: user’s
query image. Bottom ten images: the re-
trieved images.

The local binary pattern (LBP) [11, 12] is a texture
analysis operator which is invariant to monotonic changes
in gray scale. Two-dimensional distributions of the LBP and
local contrast measures are used as features. A binary code
that describes the local texture pattern is built by thresh-
olding a neighborhood by the gray value of its center. The
LBP operator is related to many well known texture analysis
methods.

Grayscale histogram comparisons convert the image
from the true color RGB images to grayscale intensity
images by eliminating the hue and saturation information
while retaining the luminance. Images are then represented
by 256 element vectors where each element corresponds to
the number of the pixels with that gradient value.

Figure 7 and Figure 8 are the precision vs. recall results
with perceptual shape features, Fourier features, LBP tex-
ture features and gray histogram features implemented on
the Oliva dataset and on the Wang dataset.

Table 1 shows the number of elements of each feature
and the mean average precision of using perceptual shape
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(a) Image query of a804068.

(b) Image query of natu169.

Figure 6. Two sample queries and the corre-
sponding top ten retrieved images from the
2688 image Oliva dataset. Top image: user’s
query image. Bottom ten images: the re-
trieved images.

features, Fourier features, LBP and gray histogram for im-
age retrieval on the two datasets.

Perceptual shape features with 90 elements have the best
retrieval results on these two datasets. Perceptual shape
features with only 10 elements also performed well. In
the Wang dataset, perceptual shape features (10) and LBP
performed equivalently, but in the Oliva dataset perceptual
shape features (10) outperformed although LBP has about
25 times more elements in its features than perceptual shape
features (10).

5.3 Further Discussion

Perceptual shape features (10) provides a concise repre-
sentation of image, requires only a small amount of storage
and may allow faster matching when a dataset is especially
large. To develop a powerful image retrieval system, adding
more information, like perceptual shape features (90), im-
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Figure 7. Average precision-recall of 1000 re-
trievals on the Wang dataset.
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Figure 8. Average precision-recall of 2688 re-
trievals on the Oliva dataset.

proves performance. Additional features built up on percep-
tual edge tokens, such as joints, closure and structure forms,
could be added.

Perceptual shape features focusing on contour and tex-
ture are based on the edges extracted in the image. Figure 9
gives two image queries. One query is good, while another
one shows the limitation of only using edges in CBIR. In
this example, the contours of the overlapped horses and ele-
phants are not clearly distinguishable although they belong
to different categories in the Wang dataset. This similar-
ity unavoidably influences the retrieval precision of using
perceptual shape features. One of the possible solutions is
to define the common colors of elephants and horses and
therefore to distinguish them. The intention of this paper
was to explore the usefulness of perceptual shape features.
How to combine them with other useful information is open
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Features # of Elements MAP of the Wang Dataset MAP of the Oliva Dataset
Perceptual Shape Features 10 0.342 0.377
Perceptual Shape Features 90 0.379 0.420

Fourier Features 32 0.198 0.176
Fourier Features 128 0.194 0.170

LBP 256 0.343 0.259
Gray Histogram 256 0.250 0.162

Table 1. Features and their mean average precisions (MAP) on two datasets.

for future research.

(a) Image query of 777.

(b) Image query of 778.

Figure 9. Two sample queries and the corre-
sponding ten retrieved images in the Wang
dataset. Top image: user’s query image. Bot-
tom ten images: the retrieved images.

The Wang dataset is a widely used benchmark dataset for
CBIR. Deselaers et al. [6] compared nine methods of image
retrieval, including Wang’s SIMPLIcity [20] method, on the
Wang dataset (Table 2). They used an alternative compari-
son of image retrieval, the error rate, which correlates well
with other measures of recall and precision [5]. Error rate is
1−P (1) where P (1) is the precision for the first successful

retrieval averaged over the entire dataset [5].

Feature ER (%)
inv. feat. histogram 15.9

color histogram 17.9
pixel values (IDM) 22.3
Tamura histogram 31.0

local feature histogram 32.5
Gabor histogram 48.2

regions (SIMPLIcity) 54.3
pixel values (Euclidean) 55.1

local features 62.5
Perceptual Shape Features (90) 22.4
Perceptual Shape Features (10) 30.1

Table 2. Error rates [%] of different retrieval
methods (See [6] for details) for the Wang
dataset.

Although our method uses fewer features and no color
information, this perceptual shape feature method compares
well with the texture and color-based methods reported by
[6]. No other shape feature method has been reported on the
Wang dataset.

The Oliva dataset consists of urban and natural scenes
categories. Originally it was built to study human and com-
putational abilities at real world scene understanding. At
the time of this study, there appears to be no image retrieval
experiments conducted on this dataset. To illustrate the ro-
bustness and efficiency of using perceptual shape feature in
natural scenery image retrieval, the experiments were con-
ducted on this dataset as well. Results were also positive on
this dataset (Error Rate for 90 elements: 20.4% and 10 ele-
ments: 26.8%). These experiments demonstrate that shape-
based methods have potential in real world image retrieval
applications.

6 Conclusions

This work is based on perceptual edge features and can
be used in the lowest level of query. The perceptual shape
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features are simple characterizations of images but can han-
dle complex images retrieval, such as natural scenes. Re-
trieval performances on two datasets show the features are
concise and robust for supporting general purpose content-
based image retrieval. This study used only a simple sim-
ilarity measure and performed well without optimization
of weighting for each element in the feature vector. For
specific tasks, it may be possible to determine appropriate
weights with a training dataset. As these methods are shape-
based, they are robust to color change or grayscale images
and may have potential use in other tasks, such as medical
image or satellite image analysis when color information is
limited. In addition, these shape-based methods may have
potential synergies with color-based methods.
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