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INTRODUCTION

When realistic population models are available for
endangered species, they can help predict changes in
population size over time and in response to specific
perturbations, and they can also indicate when and
where conservation efforts may be most effective
(Shuter et al. 1998, Crouse 1999, Bjorndal et al. 2005).
The utility of such models is enhanced by integrating
comprehensive information on life history parameters,
including growth, maturation, fecundity, and potential
differences in the mortality and geographic distribu-
tions of various ages and/or size classes (Chaloupka
2002, Mazaris et al. 2005). Unfortunately, for many
marine vertebrates much of this information is lacking,
making their conservation and management especially
challenging. 

Although the leatherback turtle Dermochelys cori-
acea is the most widely distributed of all sea turtles,
with individuals undertaking extensive migrations
between tropical and temperate waters (Hays et al.
2004, James et al. 2005b,c), most efforts to study this
species have focused on nesting beaches. Research on
leatherback nesting ecology (Girondot & Fretey 1996,
Reina et al. 2002, Rivalan et al. 2005) has facilitated
modeling of nesting trends in some colonies (Spotila et
al. 2000, Girondot et al. 2002, Troëng et al. 2004, Dut-
ton et al. 2005). However, more comprehensive, pre-
dictive modeling of the dynamics of the broader
leatherback population at ocean-basin scales requires
improved mortality estimates for different segments of
the population (Lewison et al. 2004, Kaplan 2005) and
integration of other critical life history parameters,
many of which have not been previously documented.
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Given the imperiled status of leatherback populations
worldwide (Spotila et al. 1996, 2000), there is an urgent
need to define these parameters. Collection of field
data from in-water studies of leatherbacks is essential
to this process, as capturing turtles at sea enables more
representative sampling of the population than do
studies based on nesting beaches.

Coastal and slope waters of the NW Atlantic above
38° N provide high-use foraging habitat for leather-
backs (James et al. 2005c). Waters off Nova Scotia,
Canada, are particularly important to this species, as
indicated by the large seasonal aggregation of turtles
that occurs there (James et al. 2006). Fisheries inter-
actions are an important source of injury and mortality
for leatherbacks in temperate waters (Godley et al.
1998, Lewison et al. 2004, James et al. 2005c); how-
ever, the implications of such interactions cannot be
assessed without knowledge of the sources of the
turtles that are affected, their size and sex. 

In the present study we present the first synthesis of
data on the population size structure, sex ratios, ori-
gins, and remigration intervals of leatherbacks at high
latitudes of the Atlantic. This information is needed to
construct population dynamics models that can be
used both to assess conservation risks to this species
and to guide appropriate management actions.

MATERIALS AND METHODS

At-sea field research. We identified periods of peak
leatherback occurrence in coastal areas of Nova Scotia
from patterns of sightings reported by fishers, tour
boat operators, and other mariners (Martin & James
2005) and conducted field research at these times.
Field studies were undertaken in 2 areas of the Scotian
Shelf. The first encompasses shelf waters off the SW
coast of mainland Nova Scotia (approx. 44° N, 64° W).
The second area corresponds to waters off the NE tip of
Cape Breton Island, near the mouth of the Gulf of
St. Lawrence (approx. 47° N, 60° W). Field studies took
place off Cape Breton Island during the summers of
1999 to 2006 and off mainland Nova Scotia during the
summers of 2001 to 2006. 

Leatherbacks were captured at or near the sea sur-
face using a breakaway hoop-net (for more details see
James et al. 2005c). Curved carapace length (CCL) and
curved carapace width (CCW) were collected from
most turtles, but not all, as poor sea conditions and
other logistical challenges occasionally hindered mea-
surement of captured individuals. When sea condi-
tions permitted, some turtles were brought aboard
using a stern-mounted ramp and were weighed with a
digital hanging scale (Model TL6000; Intercomp). To
minimise measurement error, one of us (M. C. James)

examined and recorded morphometrics of all indi-
viduals. 

Sexual dimorphism in tail length was used to assign
sex to leatherbacks. We have observed markedly
longer tails, with a greater distance between the cloaca
and the posterior tip of the carapace, among mature
male vs. female leatherbacks (James 2004). Consistent
with other species of sea turtle, such sexual dimor-
phism becomes increasingly evident with increasing
carapace size (Godley et al. 1998, Heithaus et al. 2005).
To reduce potential error associated with visually sex-
ing leatherbacks of smaller size classes, we assigned
sex only to turtles of ≥145 cm CCL. While some female
Atlantic leatherbacks reach sexual maturity before
attaining a CCL of 145 cm (Stewart at al. in press),
studies of multiple Atlantic nesting populations sug-
gest that this reflects the minimum size at maturity for
most turtles (Boulon et al. 1996); therefore, we follow
Eckert’s (2002) classification of leatherbacks <145 cm
CCL as juveniles. 

To determine if turtles had been previously tagged,
the rear flippers were inspected for metal tags and the
right and left shoulder musculature and neck were
scanned for the presence of passive integrated trans-
ponders (PITs) using a hand-held PIT reader (Dutton &
McDonald 1994). Readers capable of detecting multi-
ple brands of PITs, including those most commonly
implanted in leatherbacks (i.e. AVID and Trovan) were
used. Unmarked turtles were equipped with flipper
tags (Monel No. 49, National Band and Tag) and a
PIT in the right shoulder muscle (AVID encrypted or
unencrypted and/or Trovan ID100). 

Nesting origins were determined both by capture of
previously tagged turtles at sea off Nova Scotia and by
reported sightings of turtles bearing Canadian flipper
tags or PITs on nesting beaches. The remigration inter-
val between nesting seasons for most female Atlantic
leatherbacks is 2 yr, although 3 yr remigration inter-
vals are also common (Girondot & Fretey 1996). We
expect that relatively few female leatherbacks venture
directly to Canadian shelf waters post nesting because
of considerable overlap in the peak nesting season in
the western Atlantic (Girondot & Fretey 1996) and
the primary foraging period in Canadian waters (June
to October) (James et al. 2005b, 2006). To clarify the
extent to which mature female leatherbacks encoun-
tered in Canadian shelf waters represent turtles that
have proceeded directly to Canadian waters in the
same calendar year (<6 mo) following nesting, we
considered time between tagging and recapture.

Examination of stranded turtles. Dead leatherbacks
found floating at sea or entangled in fishing gear and
all leatherbacks reported dead on the shoreline
(stranded)were examined and subject to necropsy when
possible. In all cases, CCL and CCW were recorded. 
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Sex was confirmed through examination of gonads
in necropsied leatherbacks. Sexual dimorphism in tail
length was used to assign sex to live-captured turtles
of ≥145 cm CCL. Dead turtles recovered directly from
fishing gear were weighed using a digital hanging
scale (Model TL6000; Intercomp). As the weights of
stranded leatherbacks may reflect compromised phys-
ical condition prior to death, these were not included
in our analyses.

Morphometrics of high-latitude leatherback popu-
lations in the NW and NE Atlantic. Records of live and
dead leatherbacks at similar latitudes in the NE At-
lantic (off the coast of France) have been collected and
summarised annually for over 2 decades by R. Duguy
and colleagues (Aquarium de La Rochelle); however,
corresponding morphometric data have not been syn-
thesised. To assess potential morphometric differences
between high-latitude leatherback foraging popu-
lations in the NW vs. NE Atlantic for the period 1998
to 2006, we compared CCL data for turtles from
shelf waters off Canada with those reported from
France (Duguy et al. 1999, 2000, 2001, 2002, 2003,
2004, 2005, 2006, 2007). Consistent with the methods
we used in Canada, we calculated adult sex ratio of
leatherbacks from France by compiling data from
turtles of ≥145 cm CCL.

For leatherbacks in Canada, we compared the rela-
tionship between carapace length and width (n = 115)
and length and mass (present study: 1998 to 2006, n =
16; Bleakney 1965 and unpubl data, n = 5; Threlfall
1978, n = 1; D’Amours 1983, n = 1) using linear regres-
sion. Although there is similar measurement error in
carapace length and width, we assumed that the mea-
surement error is relatively small compared to varia-
tion between individuals. Similar analyses were not
performed on data from France, as the published
weights (n = 5) were principally limited to stranded
individuals, and no carapace widths were available. 

Patterns of sea surface temperature in foraging
areas. For the period 1998 to 2006, we extracted the
dates of all reported live leatherback sightings in
waters off France (Duguy et al. 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007) and Nova Scotia (James
et al. 2006) to assess seasonal distributions of leather-
backs in these areas. Average monthly sea surface
temperature (SST) (4 km resolution), was obtained
from Advanced Very High Resolution Radiometer
Oceans Pathfinder data (1998–2005) and Moderate
Resolution Imaging Spectroradiometer data (2006)
(Physical Oceanography Distributed Active Archive
Center, NASA Jet Propulsion Laboratory; http://
podaac.jpl.nasa.gov) for continental shelf waters
(<200 m) encompassing leatherback sightings (1998 to
2006) in Canada and France. SST data for Canada
were collected from an area bounded by 69 to 59° W
longitude and 42.5 to 47.5° N latitude, excluding
waters of the northern half of the Gulf of Maine
(including the Bay of Fundy) and waters of the Gulf of
St. Lawrence west of 62° W. SST data for France were
collected from an area bounded by 5 to 1°W longitude
and 44 to 48° N latitude. SST data were averaged to
yield monthly SST estimates for the years 1998 to 2006.
To evaluate if SST was higher off France than Atlantic
Canada, we fit a mixed effect maximum likelihood
model to the mean monthly SSTs for the 2 areas.

RESULTS

We captured 127 leatherbacks during field research
off the coast of Nova Scotia during the summers of
1999 to 2006 (Table 1). While most turtles received a
single PIT (AVID encrypted, n = 40; AVID unen-
crypted, n = 15; Trovan ID100, n = 9), 48 turtles
received 2 PITs (AVID unencrypted and Trovan ID100).
We did not implant PITs in 16 leatherbacks, including
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Year No. No. of PITs applied No. PIT reader used
captured AVID AVID Trovan flipper-tagged

encrypted unencrypted ID100

1999 3 3 0 0 0 AVID 1001 Multi Mode
2000 4 3 0 0 0 AVID 1001 Multi Mode
2001 15 13 0 0 12 AVID Powertracker IV
2002 11 10 0 (1) 10 (1) AVID Powertracker VI
2003 28 11 (1) 13 (1) 0 26 (2) AVID Powertracker VI
2004 24 0 9 (1) 16 (4) 23 (1) AVID Powertracker VI
2005 20 0 20 20 18 (2) AVID Powertracker VI + Trovan LID500
2006 22 0 21 21 (1) 21 (1) AVID Powertracker VI + Trovan LID500

Total 127 40 (1) 63 (2) 57 (6) 110 (7)

Table 1. Dermochelys coriacea. Summary data of live capture and tagging of leatherback turtles off Nova Scotia, Canada, 1999 to
2006. Values in parentheses: no. of additional turtles recaptured (these were originally marked on nesting beaches). PIT: passive 

integrated transponder
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10 bearing PITs previously applied on nesting beaches.
We equipped 110 turtles with flipper tags.

Measurements of CCL were obtained from 120 tur-
tles off Nova Scotia, including 99 live-captured turtles
and 21 found dead at sea or on the shore. Correspond-
ing measurements of CCW were obtained from 115 of
these. The size-class distribution in Canadian coastal
waters (CCL range = 111.8 to 171.8 cm) principally
comprised large sub-adult and adult individuals
(Fig. 1). Only 1 turtle with a CCL < 125 cm was cap-
tured. We found that for the period 1998 to 2006, the
mean CCL for leatherbacks in Canadian waters was
significantly larger (Welch 2-sample t-test, p <0.0001)
than that corresponding to 82 turtles measured by
Duguy et al. (1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007) off France (mean CCL ± 95% CI: Canada =
148.1 ± 4.4 cm, France = 139.8 ± 12.2 cm; Fig. 1). More-
over, data from France revealed a significantly broader
size-class distribution than was the case for the turtles
measured in Canada (Levene’s test, p < 0.0001, Fig. 1).

There was a strong relationship between the loga-
rithms of CCL and CCW for leatherbacks in Canadian
waters: log(CCW) = 0.065 + 0.922 × log(CCL); r2 = 0.80.
The ratio of CCL to CCW did not differ significantly
between sexes and was not significantly different from
isomorphic growth (slope 95% CI = 0.837 to 1.01)
(Fig. 2). Mean mass of 23 leatherbacks from Canadian
waters, including 16 turtles we measured and 7 turtles
measured in previous studies, was 392.6 kg (range:
191.9 to 640 kg). The equation describing the relation-
ship (r2 = 0.67) between CCL and mass for Canadian
turtles was log(mass) = –4.96 + 3.46 × log(CCL) (Fig. 3).

The adult sex ratio among live-captured, stranded
and entangled turtles in Atlantic Canada was 1.86
females: 1 male (n = 80, 1998 to 2006), representing a
significant female bias (exact binomial test, p = 0.007,
95% CI = 0.53 to 0.75). In contrast, data from a smaller
sample of turtles from France (n = 28) yielded a male-
biased adult sex ratio (0.78 females:1 male). The sex
ratios in Canada vs. France were significantly different
(Fisher’s exact test, p = 0.025). 
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Fig. 1. Dermochelys coriacea. Size-frequency distribution at high
latitudes: turtles measured in Canada (1998 to 2006; n = 120) and
France (1998 to 2006; n = 82). French data from Duguy et al. 
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Mean monthly SSTs were significantly higher in
France than Canada in all months (all p-values <
0.001), ranging between 7.6°C higher in March to
2.3°C higher in August. Temporal distribution of
leatherback sightings were similar between Atlantic
Canada and France, with most reports corresponding
to the summer months (July to September), when SST
approaches seasonal highs (Fig. 4).

Nesting origins

Nesting origins for 25 leatherbacks captured off Nova
Scotia were confirmed through tag recoveries. The tag
recoveries correspond to 15 turtles originally tagged on
nesting beaches and 10 originally tagged in Canadian
waters. All tag recoveries in Canada were from live-
captured turtles. Five females previously tagged on nest-
ing beaches were identified by the presence of 1 or more
flipper tags only, 7 by the presence of a PIT only, and 3 by
the presence of both a PIT and a flipper tag. Recapture
data demonstrate that turtles utilising Canadian foraging

habitat represent nesting populations in a minimum
of 10 countries in South and Central America and
the Caribbean, including Suriname, French Guiana,
Guyana, Venezuela, Trinidad, Grenada, Colombia, Pan-
ama, Costa Rica, and Puerto Rico (Fig. 5). Three turtles
captured in Canadian waters had nesting histories en-
compassing multiple countries: French Guiana and Suri-
name (2 turtles) and Costa Rica and Panama (1 turtle). 

Migration to high latitudes during nesting
remigration interval 

Only 1 tagged turtle was recaptured off Nova Scotia
in the same calendar year in which nesting occurred
(149 d after being observed at Matura Beach, Trinidad,
Fig. 6). If we assume a minimum nesting remigration
interval of 2 yr, we can infer that 15 turtles did not nest
in the season immediately preceding their capture in
Canadian waters (Fig. 6). Because of longer intervals
between recaptures, we could not infer inter-nesting
year for 10 turtles.
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DISCUSSION

Body size at high latitudes

Comparison of carapace lengths for turtles from for-
aging areas at similar latitudes, but opposite sides of
the Atlantic, reveals differences in size-class distribu-
tions, with a larger mean CCL and narrower size-class
distribution associated with turtles off Canada’s coast.
For leatherbacks, an enhanced capacity to exploit for-
aging opportunities in cold waters is partially related to
body size and the ratio of volume to surface area (Pala-
dino et al. 1990). Therefore, as ambient ocean tempera-
tures rise, we might expect a corresponding increase in
the number of smaller-sized turtles present. The occur-
rence of more turtles of smaller size classes in waters off
France than off Canada may, therefore, reflect differ-
ences in the thermal regimes of these areas, as SST is
consistently warmer off France than off Canada
throughout the year (Fig. 4). Further evidence for larger
mean carapace lengths associated with foraging areas
characterised by generally cooler SSTs comes from
Witt et al. (2007, this volume), who report a latitudinal
gradient in body size for leatherbacks in the NE Atlantic.

It is unlikely that leatherbacks of smaller size classes
than those reported here utilise coastal temperate for-
aging areas of the NW or NE Atlantic, consistent with
the reported distribution of juvenile leatherbacks of
<100 cm CCL being constrained to waters warmer
than 26°C (Eckert 2002). Alternatively, an absence of
smaller-sized leatherbacks at higher latitudes may
reflect potential changes in the diet of leatherbacks as
they mature, with prey distributions targeted by
smaller turtles being limited to warmer, pelagic waters
and exploitation of larger coastal cnidarians accompa-
nying seasonal recruitment into shelf foraging areas
once turtles exceed a specific carapace length. Such
dietary shifts coincident with size-specific changes in
habitat use have been documented in other species of
sea turtle, including loggerhead and green turtles
(Bjorndal 1997).

In-water sex ratios

Lazell (1980) hypothesised that in any given year
there would be insufficient time for many female
leatherbacks to migrate far north after nesting, where-
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as males would be free of such constraints, resulting in
a preponderance of males in foraging areas off the NE
United States and Canada. Consistent with Lazell’s
(1980) hypothesis, our tag recapture data suggest that
many females may not reach Canadian shelf waters in
the months immediately following nesting, and recent
satellite tracking of male leatherbacks has indicated
that many are capable of completing annual migra-
tions to high-latitude feeding areas, even in breeding
years (James et al. 2005a). However, the female-biased
adult sex ratio we derived for turtles in Canadian
waters contradicts Lazell’s (1980) prediction of a male-
biased population in northern waters.

Satellite telemetry suggests that breeding remigration
intervals may be shorter for male versus female leather-
backs and that males may also depart from breeding
areas earlier than females (James et al. 2005a). Given
these sex differences in behaviour and the variable dis-
tances separating different foraging areas from nesting
and breeding sites, there may be geographic differences
in in-water adult sex ratios of leatherbacks. For example,
a higher proportion of mature females may occur in
foraging areas at lower latitudes, as these areas can be
more readily reached in the months immediately follow-
ing nesting. If this is true, the adult sex ratio data from
coastal Nova Scotia could underestimate the degree to
which the Atlantic-wide population of adult turtles is
female-biased. Alternatively, if the overall population
sex ratio approximates 1:1, because male Atlantic
leatherbacks journey to waters off nesting beaches to
breed more frequently than females (James et al. 2005a),
we predict that more southerly habitats may contain
higher numbers of mature males than females. However,
larger sample sizes and results from in-water studies of
this species in other areas are recommended before
drawing conclusions regarding geographic variation
in adult sex ratios.

We speculate that long-term trends in the sex ratios
of northern foraging populations of leatherbacks may
involve an increasing female bias resulting from both
global warming, which would augment female hatch-
ling production through elevated nest incubation tem-
peratures (Davenport 1997), and enhanced female sur-
vival associated with reduction of slaughter on nesting
beaches throughout the Atlantic.

Migration to high latitudes during nesting
remigration interval

Satellite telemetry studies indicate that females in
their inter-nesting years, sub-adults, and many mature
males undertake annual return movements between
tropical waters and high-latitude (north of 38° N)
coastal feeding areas off Canada and the NE United

States (James et al. 2005a,c). However, the proportion
of mature females that move directly to these northern
shelf waters in the first few months following nesting
is not known. Although 1 turtle in this study (Fig. 5),
another reported by Goff et al. (1994), and 2 turtles
satellite-tagged in Florida (Eckert et al. 2006) demon-
strated that some leatherbacks do make rapid, post-
nesting migrations to Canadian coastal waters, our
recapture data suggest that many females may not
venture that far north in the same calendar year in
which nesting has occurred. This may be particularly
true for turtles nesting late in the season (as the annual
foraging period in Canadian waters overlaps with the
peak nesting season in the western Atlantic), and for
turtles from more distant nesting areas. For example, a
larger proportion of females from nesting colonies in
the northern Caribbean (e.g. Puerto Rico, British Vir-
gin Islands) and Florida may proceed to shelf waters
off Canada’s coast in the spring or summer following
nesting than of females departing beaches in Central
America (e.g. Panama) or South America (e.g. French
Guiana). Currently, there are insufficient numbers of
tag recaptures available to test hypothesised differ-
ences in the degree to which turtles from various nest-
ing colonies migrate north to Canadian waters in the
same year as nesting. However, other data can be used
to clarify patterns of migration to northern latitudes.
For example, Hays et al. (2006) used satellite telemetry
to conclude that leatherbacks from Grenada are unable
to reach coastal high-latitude feeding areas in the
same year that they nested. 

Nesting origins

Prior to our initiation of dedicated leatherback field
research in Atlantic Canada, there was only 1 reported
recovery of a tagged turtle (from French Guiana) in
Canadian waters (Goff et al. 1994). The tag recapture
data we present here demonstrates that leatherbacks
from beaches across South and Central America and
the Caribbean forage in Canadian waters. Satellite
telemetry has also recently shown that turtles from
Florida, USA, are among those that occur off Canada’s
coast (Eckert et al. 2006). Leatherbacks nesting in the
eastern Atlantic have not yet been encountered
in Canadian waters. This may simply reflect a lower
probability of finding these turtles due to lower tag-
ging effort and/or smaller nesting populations in the
eastern vs. western Atlantic, or could indicate use of
alternative foraging destinations by turtles nesting in
Africa. Some leatherbacks tagged in Gabon do cross
the Atlantic to forage; however, no turtles from African
nesting colonies have yet been reported in western
Atlantic waters north of the equator (Billes et al. 2006). 
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Standardisation of tagging protocols

A lack of standardisation in tagging protocols across
leatherback nesting beaches, coupled with continued
exclusive use of non-permanent marking techniques
(i.e. flipper tags) in some areas prohibits universal
recognition of previously tagged turtles. This has cre-
ated serious obstacles to clarifying key life history
parameters that influence population demographics.
For example, as researchers on different beaches are
not equally likely to use PITs or PIT readers (of the 10
reported recaptures of turtles marked in Canada with
both flipper tags and PITs, only 2 PITs were reported
from the nesting beach), the extent to which leather-
back females distribute nests between beaches re-
mains poorly understood. Similarly, until tagging equip-
ment, protocols and effort are standardised among
nesting beach monitoring programs, it will be difficult
to assess the relative proportion of turtles from differ-
ent nesting areas represented in the Canadian forag-
ing population. Greater promise in answering this
question is likely to come from matching foraging
turtles to nesting stocks through genetic analyses
(Dutton et al. 1999).

As leatherbacks from multiple nesting beaches ag-
gregate in Canadian waters, we have taken measures
to maximise detection of individuals previously tagged
with varying technologies. For example, since 2001 we
have used PIT readers designed to decode multiple PIT
types (Table 1). This has probably increased PIT detec-
tion rates; however, given the inconsistent performance
of many multi-tag readers (Epperly et al. in press) and
the fact that flipper tags are not permanent (Rivalan et
al. 2005), our recapture data must underestimate the
proportion of previously tagged turtles we have en-
countered off Nova Scotia. For similar reasons (plus the
added challenge that many nesting beach monitoring
projects remain unable to detect multiple brands of PIT
or have yet to implement the use of PITs at all), we ex-
pect that there is a low rate of tag detection in nesting
individuals originally marked by our research group.
Moreover, incompatibility of PIT technologies has
resulted in turtles bearing Canadian flipper tags and
1 brand of PIT later receiving a second, different brand
of PIT, while nesting.

In addition to applying flipper tags, we have also
equipped all turtles with both Trovan and AVID PITs
since 2004 to increase detection of Canadian-tagged
individuals by nesting beach personnel. While these
represent the 2 most common brands of microchip
used to mark this species (Epperly et al. in press), until
PIT readers capable of detecting 1 or both of these
technologies become standard equipment on all moni-
tored beaches, PITs in many turtles tagged in Canada
will go unnoticed.

CONCLUSIONS

Leatherbacks show fidelity to broad temperate for-
aging zones, returning to northern waters on the same
side of the Atlantic in subsequent years (James et al.
2005b,c). Our comparison of high-latitude leatherback
populations in the NW and NE Atlantic demonstrates
that foraging populations that share at least some com-
mon nesting origins (Fretey & Girondot 1996, Girondot
& Fretey 1996, Troëng et al. 2004) can have different
population characteristics that may be influenced by
many factors, including proximity to nesting centres
and environmental conditions. 

Beyond demonstrating fidelity to the eastern or west-
ern Atlantic, there is evidence for further segregation
among high-latitude leatherback populations. For
example, leatherbacks that forage in the region of the
Grand Banks (Witzell 1998) may comprise a separate
group of individuals from those that occur in shelf
waters off Nova Scotia (James et al. 2005c). If foraging
subpopulations exist, each may be subject to different
sources and levels of anthropogenic mortality. There-
fore, to evaluate the effects of such threats on broader
leatherback populations (e.g. at the scale of Atlantic or
Pacific stocks), further definition of nesting origins, sex
ratios and size-class distributions of turtles from multi-
ple areas of the species’ range is critical. 

At-sea field research confirms that leatherbacks
from multiple nesting colonies aggregate annually off
Canada’s Atlantic coast. Therefore, Canadian efforts to
promote recovery of this endangered reptile have
global implications and should include participation
in international sea turtle conservation initiatives
and reduction of incidental capture of leatherbacks in
Canadian fisheries.
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